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Abstract

Postoperative complications following laparoscopic general surgery contribute significantly to patient morbidity, mor-
tality, and healthcare costs. This study develops and evaluates machine learning and deep learning models to predict six
critical postoperative complications: cardiac arrest, myocardial infarction, pulmonary embolism, reintubation, pneumo-
nia, and failure to wean from ventilatory support. Using a deidentified dataset of 210,349 patient records, we implemented
a comprehensive classification pipeline to address the substantial class imbalance inherent in surgical complications
data. The pipeline incorporated preprocessing techniques, synthetic minority oversampling, and systematic evaluation of
machine learning algorithms and deep learning architectures. Model performance was assessed using Area Under the Curve
(AUC) and recall metrics, with particular emphasis on maximizing the detection of true positive cases given the clinical
importance of early intervention. To complement these metrics Receiver Operator Characteristic (ROC) visualizations
and confusion matrices were provided. We compared the performance of different models across the six complications and
identified which approaches were most effective for specific adverse outcomes. Our findings provide insights into the rela-
tive value of model complexity versus interpretability in clinical prediction tasks and highlight important considerations
for the implementation of predictive analytics in surgical care. This research contributes to the advancement of predictive
analytics in postoperative care and offers practical recommendations for clinical integration to improve surgical outcomes
through early intervention and optimized resource allocation.
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1 Introduction

Postoperative complications after general laparoscopic
surgery represent significant challenges to patient recov-
ery, utilization of healthcare resources, and overall surgical
outcomes. Despite advances in minimally invasive surgical
techniques, patients continue to experience adverse events
such as cardiac arrest, myocardial infarction, pulmonary
embolism, reintubation, pneumonia, and failure to wean

from ventilatory support. These complications not only
impact patient morbidity and mortality, but also substan-
tially increase healthcare costs through extended hospital
stays, readmissions, and additional interventions[1].

Early prediction of such complications remains a criti-
cal yet challenging aspect of perioperative care. Traditional
risk assessment tools often rely on simplified scoring sys-
tems with limited discriminative ability in diverse patient
populations[2][3]. Recent advances in machine learning and
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deep learning methodologies offer promising alternatives
for developing more accurate and personalized risk predic-
tion models using the wealth of preoperative patient data
available in modern electronic health records[4][5][6].

This study aims to develop and evaluate a comprehen-
sive suite of predictive models for the six clinically significant
postoperative complications mentioned above after general
laparoscopic surgery. Using a deidentified dataset, we employ
both machine learning algorithms and deep neural network
architectures to address the inherent class imbalance and
complex relationships within surgical outcome data.

Our research makes several key contributions to the
field. First, we present a systematic comparison of multi-
ple predictive modeling approaches in several postoperative
complications, providing information on which algorithms
perform best for specific adverse outcomes. Second, we
address the critical issue of class imbalance, a common
challenge in medical prediction tasks, through targeted over-
sampling techniques. Third, we evaluate models not only on
discriminative performance metrics such as AUC but also on
clinically relevant measures such as recall, directly impact-
ing the practical utility of these predictive tools in surgical
settings.

The remainder of this paper is organized as follows.
Section 2 describes the dataset, including the input features
and target outcomes. Section 3 presents exploratory data
analysis, examining feature distributions and relationships.
Section 4 details our methodological approach, including
preprocessing, oversampling, and the implementation of
various machine learning and deep learning architectures.
Section 5 reports the experimental results for all models
and complications. Section 6 discusses the clinical implica-
tions of our findings, model selection considerations, and

practical recommendations for integration into surgical care
pathways[7]. Finally, Section 7 concludes with a summary of
our contributions and directions for future research.

By developing robust predictive models for postoperative
complications, this work aims to enable earlier interventions,
optimize resource allocation, and ultimately improve patient
outcomes after laparoscopic general surgery.

2 Dataset

This study was deemed exempt from IRB review as all
data used were deidentified and publicly available. The
dataset comprised 210,349 patient records from the ACS
NSQIP Participant Use Data File, a national registry that
includes perioperative data from more than 600 hospitals in
the United States. Each record represents a unique laparo-
scopic general surgery case and includes preoperative clinical
and demographic features used to predict postoperative
complications occurring within 30 days of surgery.

The dataset includes 19 input features, of which only
two variables (Age and BMI) are continuous; the remain-
ing features are categorical. These features were selected
based on their known or potential clinical relevance to sur-
gical outcomes[8]. Demographic variables such as age, sex,
and race can influence physiological responses to surgery
and healing rates. Comorbid conditions such as diabetes,
pulmonary disease, heart failure, and cancer are widely
recognized risk factors for poor postoperative outcomes[9].
Lifestyle factors such as smoking and the need for hyperten-
sion medications provide additional context to the overall
health status of the patient. Information about the proce-
dure, such as the CPT code and hospital status, offers insight
into the complexity and setting of the surgical intervention.

Table 1: Input Features Data Dictionary.

Name of Feature Description of Feature

Age Patient’s age
Sex Patient’s biological sex (Male, Female, Non-binary)
Race Patient’s race categorization (White, African American, Unknown, Other, Asian, Mixed)
BMI Patient’s Body Mass Index
Hospital Status Patient’s hospital status (Inpatient, Outpatient)
ASA Classification ASA physical status classification (No Disturb, Mild Disturb, Severe Disturb, Life Threat)
CPT Current Procedural Terminology code
Diabetes Patient’s diabetes status (No, Yes)
Smoke Patient’s smoking status (No, Yes)
Functional Health Status Patient’s pre-operative functional health status (Independent, Dependent)
History Pulmonary Disease Patient’s history of chronic obstructive pulmonary disease (No, Yes)
Ascites Presence of ascites in patient (No, Yes)
History Congestive Heart Failure Patient’s history of congestive heart failure (No, Yes)
Hypertension Medication Patient requires hypertension medication (No, Yes)
Dialysis Patient’s dialysis for renal failure (No, Yes)
Disseminated Cancer Patient’s disseminated cancer (No, Yes)
Steroid Patient’s chronic corticosteroid use (No, Yes)
Transfusion Patient’s blood transfusion status (No, Yes)
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Table 2: Distribution of Targets Summary.

Name of Variable Class Description Count Percentage (%)

Cardiac Arrest No Complication 210 105 99.88
Cardiac Arrest 244 0.12

Myocardial Infarction No Complication 209 893 99.78
Myocardial Infarction 456 0.22

Pulmonary Embolism No Complication 209 845 99.76
Pulmonary Embolism 504 0.24

Reintubation No Complication 209 858 99.77
Unplanned Intubation 491 0.23

Pneumonia No Complication 209 147 99.43
Pneumonia 1 202 0.57

Failure to Wean from Ventilator No Complication 209 994 99.83
Ventilator > 48 Hours 355 0.17

Inclusion of the ASA physical status classification and func-
tional health status adds an important layer of preoperative
risk stratification. A detailed summary of these features is
presented in Table 1.

The target variables represent six clinically signifi-
cant postoperative complications: cardiac arrest, myocardial
infarction, pulmonary embolism, unplanned reintubation,
pneumonia, and failure to wean from a ventilator. These
complications were selected due to their association with
increased morbidity, extended hospital stays, intensive care
utilization, and mortality. Early and accurate prediction of
such adverse outcomes is critical for surgical risk assess-
ment and perioperative planning. Each outcome is framed
as a binary classification task and exhibits substantial class
imbalance, with complication rates ranging from 0.12% to
0.57%. A summary of the distributions of the target variables
is provided in Table 2.

3 Exploratory Data Analysis

To examine the degree of association between categori-
cal variables in our dataset, we employed the Cramer’s V
coefficient, a measure particularly suited for nominal data.
Cramer’s V is calculated using the following formula:

V =

√
χ2/n

min(k − 1, r − 1)
(1)

where χ2 is the Pearson chi-square statistic, n is the total
sample size, k is the number of columns, and r is the num-
ber of rows in the contingency table. The coefficient ranges
from 0 (no association) to 1 (perfect association), provid-
ing a standardized measure of the size of the effect. Since
Cramer’s V is particularly useful in identifying correlation
coefficients between two categorical values, we discretized
Age and BMI by simply rounding each value.

Our Cramer’s V correlation matrix revealed several clini-
cally significant relationships between patient characteristics

and comorbidities. Age emerged as a significant factor, show-
ing a strong association with hypertension (V = 0.48) and
moderate associations with ASA classification (V = 0.26).
The ASA physical status classification demonstrated sub-
stantial correlations with hypertension (V = 0.38), diabetes
(V = 0.26), and history of congestive heart failure (V
= 0.25), reinforcing its role as an integrated measure of
surgical risk. The correlation between diabetes and hyper-
tension (V = 0.31) confirms their frequent co-occurrence.
BMI showed moderate associations with ASA classification
(V = 0.19) and diabetes (V = 0.14), highlighting the rela-
tionship between obesity and cardiometabolic conditions.
Inpatient/outpatient status correlated with ASA classifica-
tion (V = 0.20), indicating that higher-risk patients typically
undergo inpatient procedures. Cardiopulmonary connections
were evident between pulmonary disease, ASA classification
(V = 0.17), and congestive heart failure (V = 0.13). In par-
ticular, demographic factors such as sex and race showed
relatively weak associations with most clinical variables,
suggesting that specific comorbidities may be more direct
predictors of surgical outcomes than demographics alone.

4 Methodology

This study presents a comprehensive machine learning
and deep learning pipeline designed to classify postopera-
tive complications in six highly unbalanced target variables.
The complete implementation of the methodology is publicly
available1.

The general workflow of the classification pipeline is illus-
trated in Figure 2. The process begins with the dataset being
partitioned into training (80%) and testing (20%) subsets to
facilitate robust evaluation and generalization of the models.
Following this, the training data is passed through a prepro-
cessing stage, where missing values are handled, categorical
variables are encoded, and feature scaling is applied.

Subsequently, given the significant imbalance in post-
operative complication outcomes, oversampling techniques

1GitHub Link: Link
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Fig. 1: Correlation Matrix.

are used in training data to improve the representation of
minority classes and improve classifier performance.

The study evaluates a wide range of models, including
machine learning algorithms such as Logistic Regression,
Gaussian Naive Bayes, Decision Trees, Random Forest,
XGBoost, and K-Nearest Neighbors, as well as deep learn-
ing architectures including 2, 4, and 8 layer Multi-Layered
Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs). Hyperparameter optimization is performed using
grid or randomized search with cross validation of 3 for clas-
sical models, and Keras Tuner[10] with maximum trials of 3
for neural network architectures.

Model performance is assessed using multiple metrics,
with a strong emphasis on recall to capture as many true pos-
itive complication cases as possible. These metrics include
AUC, recall, ROC visualizations, and confusion matrices. All
performance metrics are reported on the test set to ensure
an unbiased evaluation.

4.1 Data Preprocessing

A systematic preprocessing pipeline was implemented to
ensure the dataset was appropriately formatted for down-
stream machine learning and deep learning tasks. Categori-
cal variables were encoded using LabelEncoder, transform-
ing string-based labels into numeric values. This encoding
was applied iteratively to all input features with object
datatypes.

Continuous features—specifically Age and BMI—were
standardized using StandardScaler to normalize their dis-
tributions. The scaler was fit exclusively on the training data
and subsequently applied to the validation and test sets,
preserving the integrity of the model evaluation process.

The preprocessing was performed independently for each
clinical outcome to support the one-vs-rest classification
framework. This approach ensured that each binary classifi-
cation task was handled in isolation and prepared the dataset
for the oversampling procedures.

4.2 Oversampling

To address the significant class imbalance in our dataset
(see Table 2), we use the Synthetic Minority Over-sampling
Technique[11] (SMOTE) using the imblearn[12] library.
Although our feature set consisted of 2 continuous and 17
categorical features, we chose SMOTE over SMOTE for
Nominal and Continuous features (SMOTENC). Although
SMOTENC is specifically designed to handle mixed-type
data by treating categorical variables differently during sam-
ple generation, we found that SMOTE led to superior model
performance in our experiments. This improvement is likely
due to the ability of SMOTE to generate smoothly interpo-
lated synthetic samples within the minority class, aiding the
model in learning more generalizable decision boundaries,
even at the cost of disregarding the categorical nature of
some features. After applying SMOTE, each binary target
variable in the training set exhibited a perfectly balanced
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Fig. 2: Machine and Deep Learning Pipeline.

distribution, with exactly 50% of samples belonging to the
complication class and 50% to the no complication class.
This choice was empirically validated through 3-fold cross-
validation, where models trained on SMOTE-balanced data
consistently outperformed those trained on data balanced
using SMOTENC across key performance metrics.

4.3 Machine Learning

Machine learning (ML) models form the basis for super-
vised learning algorithms. These models are widely used for
classification tasks because of their simplicity, interpretabil-
ity, and effectiveness in various real-world scenarios. In this
section, we explore several classical models available through
the popular machine learning library scikit-learn[13]

(sklearn), which is a powerful toolkit for building and
evaluating predictive models.

The models discussed include linear models like Logis-
tic Regression, probabilistic models such as Gaussian Naive
Bayes, tree-based methods with Decision Trees, and ensem-
ble methods like Random Forest and XGBoost. These algo-
rithms vary in their approach to learning patterns from data
but share the common goal of making accurate predictions.
Each model’s core methodology, mathematical formulation,
and common use cases are summarized in the following
subsections.

4.3.1 Logistic Regression[14]

Logistic regression is a linear statistical model used for
binary classification. It begins by computing a linear com-
bination of the input features:

n = w⊤p+ b

where p is the input vector, w is the weight vector, and b
is the bias term. This scalar output n is then passed through
the sigmoid activation function:

f(n) = 1
1+e−n

which maps the result to a value between 0 and 1. The
final prediction is then computed as:

a = f(w⊤p+ b)

where a represents the model’s estimated probability
that the input p belongs to the positive class. This probabil-
ity can be thresholded to produce a binary decision. Logistic
regression is widely used due to its simplicity, interpretabil-
ity, and effectiveness in linearly separable scenarios.

4.3.2 Gaussian Naive Bayes[15]

Gaussian Naive Bayes is a generative classification algo-
rithm that models each class-conditional feature distribution
as Gaussian and assumes that features are conditionally
independent given the class. The prior probability of each
class ci is computed as:

P (ci) =
number of samples in class ci

total number of samples for i = 1, 2, . . . , C

where C is the total number of classes. For each feature
n and class ci, the likelihood is modeled using the Gaussian
(normal) distribution:

P (pn|ci) = 1√
2πσ2

n,i

exp
(
− (pn−µn,i)

2

2σ2
n,i

)
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Model Target k Criterion Max Depth Learning Rate # Estimators
Decision Tree Cardiac Arrest - entropy 20 - -
Decision Tree Myocardial Infarction - gini 20 - -
Decision Tree Pulmonary Embolism - entropy 20 - -
Decision Tree Reintubation - gini 20 - -
Decision Tree Pneumonia - gini 20 - -
Decision Tree Failure to Wean - gini 20 - -
Random Forest Cardiac Arrest - - 30 - 300
Random Forest Myocardial Infarction - - 30 - 300
Random Forest Pulmonary Embolism - - 30 - 300
Random Forest Reintubation - - 30 - 300
Random Forest Pneumonia - - 30 - 300
Random Forest Failure to Wean - - 30 - 300
XGBoost Cardiac Arrest - - 20 0.10 100
XGBoost Myocardial Infarction - - 10 0.01 100
XGBoost Pulmonary Embolism - - 10 0.01 100
XGBoost Reintubation - - 10 0.01 100
XGBoost Pneumonia - - 10 0.01 100
XGBoost Failure to Wean - - 10 0.01 100
K-Nearest Neighbors Cardiac Arrest 11 manhattan - - -
K-Nearest Neighbors Myocardial Infarction 11 manhattan - - -
K-Nearest Neighbors Pulmonary Embolism 11 manhattan - - -
K-Nearest Neighbors Reintubation 11 manhattan - - -
K-Nearest Neighbors Pneumonia 9 manhattan - - -
K-Nearest Neighbors Failure to Wean 11 manhattan - - -

Table 3: Summary of Machine Learning Model Hyperparameters.

where µn,i and σ2
n,i are the mean and variance of fea-

ture n in class ci, respectively, and n = 1, 2, . . . , N for N
features. The posterior probability of a class given the input
vector is then computed using Bayes’ theorem:

P (ci|pn) = P (ci)
∏N

n=1 P (pn|ci)

where the independence assumption allows the likeli-
hoods to be multiplied across features. Finally, the predicted
class is selected as the one with the highest posterior prob-
ability:

a = argmaxc P (ci|pn)

Gaussian Naive Bayes is especially effective for high-
dimensional problems, offering a simple yet powerful proba-
bilistic framework.

4.3.3 Decision Tree[16]

Decision trees are non-parametric supervised learning
models used for classification tasks. At each node in the
tree, the algorithm evaluates a splitting criterion to deter-
mine the quality of a potential split. One common criterion
is the Gini impurity, calculated as:

Gini(node) = 1−
∑C

c=1 p
2
c

where pc is the proportion of samples belonging to class
c at a given node and C is the total number of classes.
Another widely used criterion is information gain, which is
derived from entropy:

Entropy(node) = −
∑C

c=1 pc log2 pc

Entropy measures the level of uncertainty or disorder in
the class distribution at a node. To evaluate the effectiveness
of a split, the change in impurity for a particular criterion
is computed as:

∆I(node) = I(nodeparent)−(
left samples
total samplesI(nodeleft) +

right samples
total samplesI(noderight)

)
where I is the desired criterion. This quantity represents

the weighted decrease in impurity resulting from a split.
Once the tree is fully grown or pruned, predictions are made
by traversing from the root to a leaf node based on feature
values. The final prediction corresponds to the class with
the highest estimated probability at the leaf:

a = argmaxc Pleaf(p)

where Pleaf(p) denotes the class distribution at the
reached leaf node. Decision trees are intuitive, interpretable,
and serve as the foundation for more advanced ensemble
methods like Random Forests and Gradient Boosted Trees.
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Model Target Units 1 Units 2 Units 3 Units 4 Dropout 1 Dropout 2 Dropout 3 Learning Rate

2 Layer Cardiac Arrest 40 - - - - - - 0.01
4 Layer Cardiac Arrest 96 48 8 - - - 0.3 0.01
8 Layer Cardiac Arrest 192 32 16 16 0.2 0.1 0.1 0.01
2 Layer Myocardial Infarction 104 - - - - - - 0.001
4 Layer Myocardial Infarction 96 64 8 - - - 0.4 0.01
8 Layer Myocardial Infarction 192 128 32 24 0.2 0.3 0.1 0.001
2 Layer Pulmonary Embolism 72 - - - - - - 0.001
4 Layer Pulmonary Embolism 64 64 16 - - - 0.1 0.001
8 Layer Pulmonary Embolism 192 96 48 16 0.2 0.4 0.2 0.001
2 Layer Reintubation 8 - - - - - - 0.01
4 Layer Reintubation 128 64 8 - - - 0.2 0.0001
8 Layer Reintubation 64 64 16 24 0.1 0.1 0.1 0.001
2 Layer Pneumonia 72 - - - - - - 0.01
4 Layer Pneumonia 128 16 8 - - - 0.5 0.001
8 Layer Pneumonia 192 64 32 24 0.1 0.2 0.1 0.01
2 Layer Failure to Wean 40 - - - - - - 0.01
4 Layer Failure to Wean 128 48 16 - - - 0.2 0.001
8 Layer Failure to Wean 256 32 64 8 0.1 0.3 0.1 0.001

Table 4: Summary of MLP Model Hyperparameters.

4.3.4 Random Forest[17]

Random Forest is an ensemble learning method that
builds multiple decision trees and aggregates their predic-
tions to improve generalization and reduce overfitting. The
algorithm begins by generating B bootstrap samples from
the original dataset D:

Sample D(b) ∼ Bootstrap(D) for b = 1, . . . , B
decision trees

Each decision tree T (b) is trained independently on its
corresponding bootstrap sample. At each node of tree T (b),
the best split is selected from a random subset of the feature
set:

For each node in tree T (b)

choose best split from random subset Fm ⊂ {1, . . . , p}

This strategy encourages diversity among the trees by
injecting randomness into both the data and the feature
selection process. A total of B decision trees are constructed
using the bootstrap datasets D(b) and their respective ran-
dom feature subsets Fm:

Build B decision trees T (1), . . . , T (B) using D(b) and
Fm

For a new input p, each tree outputs a predicted class
label based on the majority class at the reached leaf:

a(b) = argmaxc Pleaf(b)(p)

The final prediction is obtained by aggregating the votes
across all B trees and selecting the class with the highest
average vote count:

a = argmaxc
1
B

∑B
b=1[a

(b) = p]

Random Forests are robust, handle high-dimensional
data well, and are less prone to overfitting than individual
decision trees due to their ensemble structure.

4.3.5 XGBoost[18]

XGBoost (Extreme Gradient Boosting) is a scalable, reg-
ularized boosting algorithm that builds an ensemble of
decision trees in a sequential manner. Each tree is trained
to correct the errors made by the ensemble of previously
constructed trees, with the goal of minimizing a regularized
objective function:

L =
∑N

i=1 ℓ(a, t) +
∑K

k=1 Ω(fk)

Here, ℓ(a, t) denotes the loss between predicted values a
and target values t, while Ω(fk) is a regularization term that
penalizes the complexity of each tree fk. The regularization
function is defined as:

Ω(f) = γT + 1
2λ∥w∥2

where T is the number of leaves in the tree, w is the vec-
tor of leaf weights, γ is the penalty for each added leaf, and
λ controls L2 regularization on the leaf weights.

At each boosting round k, a new function fk is added
to improve the prediction. To do so, XGBoost computes the
first and second-order derivatives (i.e., pseudo-residuals and
hessians) of the loss with respect to the current predictions
ai:

gi = ∂aℓ(ai, ti), hi = ∂2
aℓ(ai, ti)
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Model Target Filters 1 Filters 2 Kernel Size Pool Size Dense Units Dropout Learning Rate Filters 3+

2 Layer Cardiac Arrest - - 3 - 32 - 0.01 -
4 Layer Cardiac Arrest 32 96 2 3 32 - 0.001 -
8 Layer Cardiac Arrest 48 96 5 2 - 0.3 0.001 128, 96, 48
2 Layer Myocardial Infarction - - 2 - 48 - 0.01 -
4 Layer Myocardial Infarction 16 96 3 2 32 - 0.001 -
8 Layer Myocardial Infarction 32 96 5 2 - 0.5 0.01 128, 64, 64
2 Layer Pulmonary Embolism - - 5 - 64 - 0.001 -
4 Layer Pulmonary Embolism 16 96 2 3 48 - 0.01 -
8 Layer Pulmonary Embolism 32 128 5 2 - 0.5 0.0001 128, 32, 64
2 Layer Reintubation - - 3 - 48 - 0.01 -
4 Layer Reintubation 16 128 3 3 64 - 0.01 -
8 Layer Reintubation 64 128 2 2 - 0.1 0.001 64, 64, 16
2 Layer Pneumonia - - 5 - 64 - 0.001 -
4 Layer Pneumonia 16 128 5 2 48 - 0.001 -
8 Layer Pneumonia 16 96 3 3 - 0.3 0.01 256, 128, 48
2 Layer Failure to Wean - - 5 - 48 - 0.01 -
4 Layer Failure to Wean 48 64 5 2 48 - 0.01 -
8 Layer Failure to Wean 16 64 3 2 - 0.4 0.001 192, 128, 16

Table 5: Summary of CNN Model Hyperparameters.

These gradients are then used to construct a new tree fk
by greedily selecting splits that maximize the gain in regu-
larized objective reduction. The structure and weights of fk
are chosen to best approximate the negative gradients.

AfterK rounds of boosting, the final prediction for a new
input p is obtained by summing the outputs of all the trees:

a =
∑K

k=1 fk(p)

XGBoost achieves high performance by incorporating
regularization, supporting parallel tree construction, han-
dling missing values natively, and leveraging both first- and
second-order derivatives to optimize each tree. Its flexibility
and efficiency make it a popular choice for many machine
learning tasks.

4.3.6 K-Nearest Neighbors[19]

K-Nearest Neighbors (KNN) is a non-parametric classifi-
cation method that predicts the label of a new input based
on the labels of its k closest training samples in the feature
space. Given a query point p, the model first computes the
squared Euclidean distance to each training point pi:

Euclidean Distance(p,pi) = ∥p− pi∥2

Other distance metrics, such as Euclidean ∥·∥2 and Man-
hattan ∥·∥1, may also be used depending on the context.

Manhattan Distance(p,pi) = ∥p− pi∥1

Once distances are computed, the k nearest neighbors to
the point p are identified, typically using an efficient search
algorithm:

Nk(p) = indices of the k-closest training points to p

The final predicted class is determined by a majority vote
among these k neighbors, choosing the class that appears
most frequently:

a = argmaxc
∑

i∈Nk(p)
[ai = c]

KNN is simple, intuitive, and effective when the deci-
sion boundary is irregular. Its performance is sensitive to the
choice of k and the distance metric used.

4.4 Deep Learning

Deep learning (DL) models are capable of learning com-
plex patterns from data through layered computational
structures. In this section, we focus on two foundational
architectures—Multi-Layered Perceptrons (MLPs) and 1-
Dimensional Convolutional Neural Networks (CNNs)—both
implemented using TensorFlow[20]. MLPs are fully con-
nected networks suitable for general-purpose classification
tasks, while 1D CNNs are designed to capture local patterns
in structured input such as time series or sequences. Both
models serve as powerful tools for supervised learning tasks
and are trained by minimizing classification loss functions
such as binary cross-entropy.

4.4.1 Multi-Layered Perceptrons[14]

Multi-Layered Perceptrons (MLPs) are feedforward neural
networks used for classification tasks. They transform input
features into output class scores through layers of linear
operations and non-linear activations.

Given an input vector p, the input layer sets the initial
activation:

a0 = p
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Model
Cardiac
Arrest

Myocardial
Infarction

Pulmonary
Embolism

Reintubation Pneumonia
Failure to Wean
from Ventilator

AUC Recall AUC Recall AUC Recall AUC Recall AUC Recall AUC Recall
Logistic Regression 0.8669 0.7551 0.8406 0.7253 0.7131 0.6337 0.8377 0.7755 0.8248 0.7417 0.8854 0.8028
Gaussian Naive Bayes 0.8675 0.5918 0.8215 0.3626 0.6931 0.3465 0.8185 0.3878 0.8059 0.4083 0.8532 0.4930
Decision Tree 0.5102 0.0408 0.5621 0.1099 0.5528 0.1386 0.5478 0.0714 0.5858 0.1292 0.5519 0.1268
Random Forest 0.7264 0.0000 0.7549 0.0110 0.6657 0.0099 0.7424 0.0000 0.7498 0.0083 0.7899 0.0141
XGBoost 0.7786 0.0000 0.8046 0.3846 0.6641 0.2871 0.7965 0.3367 0.7779 0.3958 0.7067 0.2113
K-Nearest Neighbors 0.5279 0.0408 0.5683 0.0989 0.5401 0.0891 0.5678 0.1122 0.5948 0.1500 0.5936 0.1549
2 Layer MLP 0.4615 0.1429 0.6986 0.1978 0.5600 0.1782 0.7360 0.4388 0.6506 0.3792 0.6121 0.1408
2 Layer CNN 0.8537 0.7959 0.8174 0.6923 0.6714 0.4257 0.7900 0.6224 0.7993 0.5875 0.8500 0.7042
4 Layer MLP 0.5706 0.0816 0.7512 0.2198 0.5838 0.1485 0.6630 0.1429 0.7343 0.4292 0.7099 0.1690
4 Layer CNN 0.6601 0.3265 0.7839 0.5165 0.5877 0.2574 0.6415 0.1735 0.7078 0.5333 0.6644 0.2113
8 Layer MLP 0.6194 0.0612 0.7324 0.0769 0.5961 0.0990 0.6587 0.1531 0.6187 0.2042 0.6620 0.0845
8 Layer CNN 0.6017 0.0816 0.6879 0.1538 0.5743 0.2574 0.6447 0.1429 0.6431 0.1417 0.6457 0.1127

Table 6: AUC and Recall Scores for Best Models Across Targets. Bolded Values Indicate Best Score per Metric.

Each layer m+ 1 computes:

am+1 = fm+1(Wm+1am + bm+1) for m = 0, . . . ,M − 1

The final output is:

a = aM

In classification, a typically contains class scores or
probabilities. The predicted label corresponds to the highest-
scoring class. MLPs can learn complex decision boundaries
and are sensitive to architecture and training choices.

4.4.2 Convolutional Neural Networks[21]

1-Dimensional Convolutional Neural Networks (CNNs)
are designed for structured data like time series or sequences.
They use learnable filters to extract local patterns and build
hierarchical representations useful for classification.

Each convolutional layer m applies a filter w(m,l) to the
activations a(l) from layer l:

z(m) = w(m,l) ∗ a(l)

The convolution ∗ slides the filter across the input to
detect features. Pooling layers then reduce dimensionality
and help generalize by summarizing features:

z = w ⊞avg
r v (average)

z = ⊞max
r v (max)

CNNs are effective for classification tasks by learning spa-
tial patterns and reducing overfitting through weight sharing
and pooling.

5 Results

Our results of classical machine learning and deep learn-
ing approaches for predicting postoperative complications in
general laparoscopic surgery revealed notable performance
patterns in different models and types of complication.
We evaluated all the classification algorithms in the previ-
ous section using both discriminative metrics (AUC) and
clinically relevant performance indicators (recall). Detailed
descriptions of these evaluation metrics are provided in the

following subsections along with a table of comprehensive
results. The performance of the models is further visualized
through ROC curves and confusion matrices, which offer
insights into trade-offs inherent in clinical prediction tasks.

All reported results are based on optimized models after
extensive hyperparameter tuning, with the final configura-
tions detailed in Tables 3, 4, and 5.

5.1 Area Under Curve

The AUC is a scalar performance metric derived from the
ROC curve, which plots the True Positive Rate (TPR, or
recall) against the False Positive Rate (FPR) across varying
classification thresholds. These rates are defined as follows:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
where TP, FP, FN, and TN denote the number of true

positives, false positives, false negatives, and true negatives,
respectively.

The ROC curve is created by sweeping the classification
threshold from 0 to 1 and plotting the corresponding pairs
FPR, TPR). The AUC is then computed as the area under
this curve.

AUC =

∫ 1

0

TPR(FPR) d(FPR)

In practice, this integral is approximated using the trape-
zoidal rule on a discrete set of prediction scores. AUC
represents the probability that a randomly chosen positive
instance is ranked higher than a randomly chosen negative
one. An AUC of 1.0 indicates perfect separability, whereas
0.5 suggests performance equivalent to random guessing. In
clinical settings, an AUC of 0.80 or greater is considered
acceptable.

As shown in Table 6, the highest performing AUC scores
for the six postoperative complications ranged from 0.7131-
0.8854 with an average score of 0.8282. Logistic Regression
achieved the highest AUC values in all postoperative compli-
cations except cardiac arrest. Gaussian Naive Bayes slightly
outperformed for cardiac arrest and demonstrated competi-
tive results in terms of the classical machine learning models.
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Fig. 3: Cardiac Arrest Results ROC
Plot.
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Fig. 4: Myocardial Infarction
Results ROC Plot.
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Fig. 5: Pulmonary Embolism
Results ROC Plot.
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Fig. 6: Reintubation Results ROC
Plot.
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Fig. 7: Pneumonia Results ROC
Plot.
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Fig. 8: Failure to Wean Results ROC
Plot.

Deep learning models such as the 2 Layer CNN also showed
good results in general.

The ROC curves presented in Figures 3-8 provide visual
confirmation of our quantitative AUC findings discussed ear-
lier. For myocardial infarction (Figure 4), we observe tightly
clustered performance among the top models, with several
approaches achieving clinically viable AUCs greater than
0.80. The pulmonary embolism prediction task (Figure 5)
shows a more modest performance in all models, suggest-
ing that this complication remains particularly challenging
to predict regardless of the approach. The cardiac arrest
(Figure 3), reintubation (Figure 6), pneumonia (Figure 7)
and failure to wean (Figure 8) prediction curves reveal that
while several models achieve similar maximum AUCs, they
do so through different true positive and false positive rate
trade-offs, which has important clinical implications depend-
ing on whether prioritizing the detection of positive cases
or minimizing false alarms is deemed more critical for the
specific clinical context.

5.2 Recall

As mentioned in the previous subsection, recall serves as
a critical metric for clinical prediction tasks. It represents

the TPR or postoperative complications correctly identified.
As shown in Table 6, top performing recall scores for all six
postoperative complications ranged from 0.6337-0.8028 with
an average score of 0.7458. Once again, Logistic Regression
consistently shows strong recall in all postoperative compli-
cations except cardiac arrest. For cardiac arrest, however,
the 2 Layer CNN excels with a superior recall, outperforming
other approaches.

The confusion matrices 7-8 reveal important clinical
implications of these recall values. For cardiac arrest pre-
diction, the 2 Layer CNN correctly identifies a significant
majority of cases, substantially outperforming the Gaussian
Naive Bayes model which, despite having a marginally better
AUC, correctly identifies fewer cases. This difference high-
lights the practical importance of recall over AUC in rare
but critical complications. Similarly, for failure to wean pre-
diction, Logistic Regression correctly identifies most cases
which represents substantial clinical value in anticipating
prolonged ventilation requirements.

Further analysis of the matrices reveals additional clin-
ically meaningful patterns. The reintubation model demon-
strates strong clinical utility by correctly identifying a high
proportion of cases, allowing for preventative measures to be
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Cardiac Arrest: Gaussian Naive Bayes (AUC = 0.8675)
Predicted

Actual No Complication Cardiac Arrest
No Complication 38,692 3,329
Cardiac Arrest 20 29

Cardiac Arrest: 2 Layer CNN (Recall = 0.7959)
Predicted

Actual No Complication Cardiac Arrest
No Complication 33,589 8,432
Cardiac Arrest 10 39

Myocardial Infarction: Logistic Regression (AUC = 0.8406; Recall = 0.7253)
Predicted

Actual No Complication Myocardial Infarction
No Complication 32,449 9,530
Myocardial Infarction 25 66

Pulmonary Embolism: Logistic Regression (AUC = 0.7131; Recall = 0.6337)
Predicted

Actual No Complication Pulmonary Embolism
No Complication 28,410 13,559
Pulmonary Embolism 37 64

Table 7: Confusion Matrices for Cardiac Arrest, Myocardial Infarction and Pulmonary Embolism Best Performing Models
by AUC and Recall Scores.

implemented before patient deterioration necessitates emer-
gency intervention. For myocardial infarction prediction, the
Logistic Regression model identifies a substantial portion of
cases, which could enable earlier cardiac interventions. The
pneumonia model shows the highest absolute number of true
positives, reflecting both the higher prevalence of this com-
plication and the model’s ability to detect it with reasonable
accuracy.

Notably, these improvements in complication detection
come with increased false positives, representing a clas-
sic sensitivity-specificity tradeoff. For example, the 2 Layer
CNN for cardiac arrest flags more than twice as many false
positives compared to Naive Bayes. In clinical implemen-
tation, this tradeoff represents a balance between resource
allocation for preventative measures and the critical impor-
tance of not missing potentially life-threatening complica-
tions. For rare but severe complications like cardiac arrest,
the cost of missing true positives far outweighs the cost
of false alarms, justifying the use of higher-recall models
despite lower specificity.

Notably, tree-based ensemble methods like Random For-
est and XGBoost demonstrate extremely poor recall across
several complications despite relatively high AUC scores. For
instance, Random Forest achieves a relatively good AUC
for cardiac arrest but fails to correctly identify any positive
cases. This discrepancy underscores the limitations of rely-
ing solely on AUC for model evaluation in clinical settings
where identifying true positive cases often takes precedence
over overall ranking performance.

6 Discussion

Based on the results presented, we discuss the clini-
cal implications and recommendations that can be derived
from the AUC and recall scores for predicting postoperative
complications in general laparoscopic surgery.

6.1 Clinical Implications of Model
Performance

Our analysis reveals several important insights with direct
clinical applications. The achieved AUC scores demonstrate
promising discriminative ability for predicting postoperative
complications. Particularly noteworthy is Logistic Regres-
sion’s consistent performance, achieving the highest AUC
across nearly all complications. This suggests that even
relatively simple algorithms can provide robust clinical
prediction capabilities when properly optimized.

The recall scores indicate that these models can suc-
cessfully identify a substantial majority of patients who will
develop complications. This capability has profound clin-
ical implications for preemptive intervention and resource
allocation.

6.2 Model Selection Based on Clinical
Context

Our findings suggest different models may be optimal
depending on the specific complication and clinical prior-
ity. For life-threatening complications such as cardiac arrest,
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Reintubation: Logistic Regression (AUC = 0.8377; Recall = 0.7755)
Predicted

Actual No Complication Unplanned Intubation
No Complication 32,229 9,743
Unplanned Intubation 22 76

Pneumonia: Logistic Regression (AUC = 0.8248; Recall = 0.7417)
Predicted

Actual No Complication Pneumonia
No Complication 30,974 10,856
Pneumonia 62 178

Failure to Wean: Logistic Regression (AUC = 0.8854; Recall = 0.8028)
Predicted

Actual No Complication On Ventilator > 48 Hours
No Complication 32,605 9,394
On Ventilator > 48 Hours 14 57

Table 8: Confusion Matrices for Reintubation, Pneumonia and Failure to Wean Best Performing Models by AUC and
Recall Scores.

myocardial infarction, and pulmonary embolism, models
with higher recall should be prioritized even at the cost
of additional false positives. The 2 Layer CNN demon-
strated superior recall for cardiac arrest, while Logistic
Regression performed well for myocardial infarction and pul-
monary embolism. Implementing these models could enable
earlier intervention for high-risk patients, potentially reduc-
ing mortality through enhanced monitoring, prophylactic
medications, or more intensive postoperative care.

For resource-intensive complications including failure to
wean and reintubation, Logistic Regression showed strong
recall performance, which could allow for better planning
of ICU resources and ventilator management. Early iden-
tification of patients likely to require prolonged ventilation
or reintubation could prompt proactive respiratory therapy,
modified extubation protocols, or extended monitoring.

For common complications such as pneumonia, while
several models performed adequately, the balance between
detection of positive cases or minimizing false alarms
becomes more important for higher-prevalence conditions.
The clinical implementation should consider the resources
required for preventative interventions against the potential
benefits of earlier detection.

6.3 Practical Recommendations for Clinical
Integration

Based on our results, we recommend:

• Implementing a two-tiered alert system: Deploy
high-recall models for critical complications (cardiac
arrest, myocardial infarction and pulmonary embolism)
where missing cases has severe consequences, while using
more balanced models for complications where resource
allocation must be optimized.

• Avoiding tree-based ensemble methods in clini-
cal settings requiring high sensitivity: Despite good
AUC scores, Random Forest and XGBoost demonstrated
poor recall for several complications, making them sub-
optimal for clinical deployment where identifying true
positive cases is essential.

• Tailoring threshold selection to clinical priorities:
The ROC curves reveal that models achieve different true
positive and false positive rate trade-offs. Hospital sys-
tems should adjust classification thresholds based on their
specific capabilities, resources, and risk tolerance.

• Prioritizing Logistic Regression for initial imple-
mentation: Its consistent performance across complica-
tions, interpretability, and computational efficiency make
it an excellent candidate for first-phase clinical integra-
tion.

• Considering specialized models for Cardiac Arrest:
The superior recall of the 2 Layer CNN for this rare but
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critical complication warrants its specific implementation
for this prediction task.

6.4 Potential Benefits in Clinical Practice

Successful implementation of these predictive models
could yield several benefits:

• Reduced complication severity through earlier
intervention: Identifying high-risk patients before symp-
toms manifest allows for targeted preventative measures.

• Optimized resource allocation: Better prediction of
complications like failure to wean can improve ICU bed
management and staffing.

• Enhanced shared decision-making: Providing sur-
geons with personalized risk assessments enables more
informed discussions with patients about potential com-
plications and management strategies.

• Standardized postoperative monitoring protocols:
Risk-stratified care pathways based on model predictions
could ensure appropriate monitoring intensity for each
patient.

• Potential cost savings: Reducing complication sever-
ity through early intervention may decrease length of stay
and readmission rates.

6.5 Limitations

While promising, these results should be interpreted with
certain caveats. The observed detection of positive cases
or minimizing false alarms tradeoff requires careful consid-
eration, particularly regarding the clinical and psycholog-
ical impact of false positives on patients and healthcare
providers. The retrospective nature of this study may not
fully capture the complexities of real-time clinical decision-
making and intervention. Model performance metrics were
evaluated on historical data and may vary in prospective
implementation. Our models did not account for all possi-
ble confounding variables that might influence postoperative
complication development. The ability to generalize these
findings to different patient populations, surgical techniques,
or healthcare systems requires further validation. Implemen-
tation challenges including integration with existing clinical
workflows, alert fatigue, and clinician adoption were not
addressed in this study.

6.6 Future Scope

Building on the foundation established in this work,
several key areas merit further investigation. Prospective
validation studies are needed to confirm model performance
in real-world clinical settings and evaluate their impact on
patient outcomes. Calibration of risk thresholds for specific

clinical environments would optimize the balance between
detection positive cases or minimizing false alarms based on
local resources and priorities. Development of model ensem-
bles might leverage the strengths of different approaches
to improve overall predictive performance. Investigation of
model performance across different patient subgroups is
essential to ensure equitable benefit across diverse popu-
lations and identify potential disparities. Integration with
electronic health record systems would enable seamless
implementation and real-time risk assessment. Exploration
of explainable AI techniques could improve clinician trust
and adoption by providing interpretable predictions. Eco-
nomic analyses would help quantify the potential cost-
effectiveness of implementing these predictive models in
various healthcare settings.

7 Conclusion

This study highlights the feasibility of using both classical
and deep learning models to predict a range of postopera-
tive complications in general laparoscopic surgery. Through
rigorous evaluation, we identified that relatively simple mod-
els like Logistic Regression can consistently deliver high
discriminative performance and clinically meaningful recall,
particularly when optimized effectively. Meanwhile, select
deep learning architectures, such as the 2 Layer CNN, offer
advantages in specific scenarios, especially for detecting rare
but critical outcomes like cardiac arrest.

Importantly, our findings underscore that model selec-
tion should not rely solely on AUC, particularly in high-
stakes clinical settings. Instead, performance metrics must
be aligned with the specific clinical context and priorities.
For complications with severe consequences, higher-recall
models—even with increased false positives—may offer sig-
nificant clinical utility by enabling early intervention and
potentially improving patient outcomes. Conversely, for
more common but less acute complications, a balanced
approach to precision and recall may be more appropriate.

Future research should explore the integration of these
predictive models into real-time clinical decision support
systems, evaluating not only predictive accuracy but also
implementation impact on workflow and patient outcomes.
Expanding model inputs to include intraoperative and post-
operative data, as well as external validation across diverse
institutions, could further improve generalizability and clin-
ical adoption.
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Sebastián-Tomás, and et al. The impact of age
and comorbidity on the postoperative outcomes after
emergency surgical management of complicated intra-
abdominal infections. Scientific Reports, 10:1631, 2020.

[10] Tom O’Malley, Elie Bursztein, James Long, François

Chollet, Haifeng Jin, Luca Invernizzi, et al. Kerastuner.
https://github.com/keras-team/keras-tuner, 2019.

[11] Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall,
and W. Philip Kegelmeyer. SMOTE: synthetic minority
over-sampling technique. CoRR, abs/1106.1813, 2011.

[12] Guillaume Lemaitre, Fernando Nogueira, and Chris-
tos K. Aridas. Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine
learning. CoRR, abs/1609.06570, 2016.

[13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Nic-
ulae, Peter Prettenhofer, Alexandre Gramfort, Jaques
Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly,
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