Vectors

From direction and magnitude to data points and gradients—vectors are the foundation of linear algebra. They shape how we navigate, calculate, and represent multidimensional spaces. 🧭

Vector Notation

A vector is simply a list of numbers that are ordered in \(\mathbb{R}^n\).

\(n\) is a positive integer indicating the number of entries.

In general, a vector \(\mathbf{v} \in \mathbb{R}^n\) can be written as:

\[ \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \]

For example, in \(\mathbb{R}^2\):

\[ \mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \hspace{0.4cm} \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

Suppose we have the following matrix:

\[ A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix} \]

One standard derivation of vectors from matrices are column vectors.

For our example, the first column vector is:

\[ \left[ \begin{array}{c c c} \color{red}{\boxed{2}} & -1 & 1 \\ \color{red}{\boxed{1}} & 0 & 0 \\ \color{red}{\boxed{0}} & 0 & 4 \end{array} \right] \]

\[ \mathbf{a}_1= \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \]

Another standard derivation of vectors from matrices are row vectors.

For our example, the first row vector is:

\[ \left[ \begin{array}{c c c} \color{red}{\boxed{2}} & \color{red}{\boxed{-1}} & \color{red}{\boxed{1}} \\ 1 & 0 & 0 \\ 0 & 0 & 4 \end{array} \right] \]

\[ \mathbf{a}^T_1= \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \]