R Advanced

🧠 Welcome to R Advanced! You’ve built a strong foundation—now it’s time to dive into more powerful and practical tools. In this section, you’ll explore Functions, Importing Statements, and Exploratory Data Analysis (EDA). These skills will help you write clean, reusable code and uncover meaningful insights from complex datasets. Whether you’re analyzing real-world data or building scalable scripts, this is where your R skills truly come to life.

Summary Table

Summary of the R Advanced section.

Concept Example Description
Basic function greet <- function() { print("Hi") } Define a reusable block of code
Parameters function(name) { print(name) } Accept input values into the function
Return values return(x + y) Send a result back to the caller
Default values function(name = "Guest") Provide fallback values for parameters
Named arguments fun(b = 2, a = 1) Pass arguments by name in any order
Variable arguments function(...) Accept any number of inputs
Access ... args <- list(...) Convert ... to a list of named arguments
Multiple return values return(list(sum = x + y, diff = x - y)) Return a list to simulate multiple return values
Missing required argument fun(x) → fun() Error if required arg isn’t provided
Missing parentheses function(x (syntax error) Missing closing ) breaks the function
Load a package library(ggplot2) Make all functions in a package available
Conditional loading if (require(pkg)) { ... } Load only if available; returns TRUE/FALSE
Aliased access dplyr::filter() Use function without loading full package
Load custom script source("utils.R") Run code from another R file
Access dataset data(mtcars) Load built-in dataset
View top rows head(mtcars) Show first 6 rows
Summary stats summary(df) Get mean, median, min, max, etc.
Handle NA na.omit(df) Remove missing data
Impute mean df$var[is.na(var)] <- mean(var, na.rm=TRUE) Replace NAs with average
Normalize (x - min(x)) / (max(x) - min(x)) Rescale between 0 and 1
Scale (standardize) scale(df) Mean = 0, SD = 1
Scatter plot ggplot(df, aes(x, y)) + geom_point() Basic scatterplot using ggplot2
Histogram geom_histogram(binwidth = 2) Show frequency distribution
Import error library(badpkg) Error if package doesn’t exist
Function not loaded select(df) without library(dplyr) Error if function isn’t available in namespace