Linear Algebra

The language of data, geometry, and computation—linear algebra provides the building blocks for modeling, transforming, and understanding high-dimensional spaces. From systems to structures, it’s at the heart of modern applied math. (Lay, Lay, and McDonald 2015) 📊

Learning Objectives

Learning objectives of the Linear Algebra section.

Summary Table

Summary of the Linear Algebra section.

Systems of Linear Equations

Concept Description Example
Linear Equation An equation in the form a_1x_1 + a_2x_2 + \cdots + a_nx_n = b 2x_1 - x_2 + x_3 = 8
System of Equations A set of linear equations with shared variables \begin{aligned} a_1x_1 + b_1x_2 &= c_1 \\ a_2x_1 + b_2x_2 &= c_2 \end{aligned}
Coefficient Matrix A matrix containing only the coefficients of a system’s variables \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}
Augmented Matrix A matrix combining coefficients and constants from a system \left[\begin{array}{ccc|c} 2 & -1 & 1 & 8\\ 1 & 0 & 0 & 2\\ 0 & 0 & 4 & 7\end{array}\right]
Matrix Notation General form to represent a matrix A with m rows and n columns A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}
Vector An ordered list of numbers representing a point or direction in space \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}
Column Vector A vertical vector derived from a matrix column \mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}
Row Vector A horizontal vector derived from a matrix row \mathbf{a}_1^T = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix}

Operations

Concept Description Example
Linear Transformation A function that maps \mathbb{R}^n \rightarrow \mathbb{R}^m using a matrix T(\mathbf{x}) = A\mathbf{x} where A is an m \times n matrix
Matrix-Vector Product Applies the transformation T(\mathbf{x}) via matrix multiplication A\mathbf{x} = \mathbf{b}
Vector Addition Adds corresponding components (head-to-tail rule) \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}
Vector Subtraction Subtracts corresponding components (tip-to-tip vector) \mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \end{bmatrix}
Scalar Multiplication Scales the vector’s length and may reverse its direction k\mathbf{u} = \begin{bmatrix} ku_1 \\ ku_2 \end{bmatrix}

Properties

Concept Description Example
L1-norm Measures total absolute difference between two vectors (Manhattan distance). \| \mathbf{u} - \mathbf{v} \|_1 = \sum_{i=1}^n |u_i - v_i|
L2-norm Measures straight-line distance between two vectors (Euclidean distance). \| \mathbf{u} - \mathbf{v} \|_2 = \sqrt{ \sum_{i=1}^n (u_i - v_i)^2 }
Transpose Flips a matrix over its diagonal, turning rows into columns. A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^\top = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}
Inverse (2×2 Matrix) Reverses a matrix transformation when the determinant is nonzero. A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \quad \det(A) = ad - bc
Eigenvalues/Vectors \mathbf{v} is an eigenvector of A if A \mathbf{v} = \lambda \mathbf{v}. A \mathbf{v} = \lambda \mathbf{v}
Characteristic Equation Equation whose solutions are the eigenvalues of A. \det(A - \lambda I) = 0