Linear Algebra
Learning Objectives
Learning objectives of the Linear Algebra section.
Summary Table
Summary of the Linear Algebra section.
Systems of Linear Equations
Concept | Description | Example |
---|---|---|
Linear Equation | An equation in the form a_1x_1 + a_2x_2 + \cdots + a_nx_n = b | 2x_1 - x_2 + x_3 = 8 |
System of Equations | A set of linear equations with shared variables | \begin{aligned} a_1x_1 + b_1x_2 &= c_1 \\ a_2x_1 + b_2x_2 &= c_2 \end{aligned} |
Coefficient Matrix | A matrix containing only the coefficients of a system’s variables | \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix} |
Augmented Matrix | A matrix combining coefficients and constants from a system | \left[\begin{array}{ccc|c} 2 & -1 & 1 & 8\\ 1 & 0 & 0 & 2\\ 0 & 0 & 4 & 7\end{array}\right] |
Matrix Notation | General form to represent a matrix A with m rows and n columns | A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} |
Vector | An ordered list of numbers representing a point or direction in space | \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} |
Column Vector | A vertical vector derived from a matrix column | \mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} |
Row Vector | A horizontal vector derived from a matrix row | \mathbf{a}_1^T = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} |
Operations
Concept | Description | Example |
---|---|---|
Linear Transformation | A function that maps \mathbb{R}^n \rightarrow \mathbb{R}^m using a matrix | T(\mathbf{x}) = A\mathbf{x} where A is an m \times n matrix |
Matrix-Vector Product | Applies the transformation T(\mathbf{x}) via matrix multiplication | A\mathbf{x} = \mathbf{b} |
Vector Addition | Adds corresponding components (head-to-tail rule) | \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} |
Vector Subtraction | Subtracts corresponding components (tip-to-tip vector) | \mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \end{bmatrix} |
Scalar Multiplication | Scales the vector’s length and may reverse its direction | k\mathbf{u} = \begin{bmatrix} ku_1 \\ ku_2 \end{bmatrix} |
Properties
Concept | Description | Example |
---|---|---|
L1-norm | Measures total absolute difference between two vectors (Manhattan distance). | \| \mathbf{u} - \mathbf{v} \|_1 = \sum_{i=1}^n |u_i - v_i| |
L2-norm | Measures straight-line distance between two vectors (Euclidean distance). | \| \mathbf{u} - \mathbf{v} \|_2 = \sqrt{ \sum_{i=1}^n (u_i - v_i)^2 } |
Transpose | Flips a matrix over its diagonal, turning rows into columns. | A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^\top = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} |
Inverse (2×2 Matrix) | Reverses a matrix transformation when the determinant is nonzero. | A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \quad \det(A) = ad - bc |
Eigenvalues/Vectors | \mathbf{v} is an eigenvector of A if A \mathbf{v} = \lambda \mathbf{v}. | A \mathbf{v} = \lambda \mathbf{v} |
Characteristic Equation | Equation whose solutions are the eigenvalues of A. | \det(A - \lambda I) = 0 |
Lay, David C., Steven R. Lay, and Judi J. McDonald. 2015. Linear Algebra and Its Applications. 5th ed. Pearson.