Systems of Linear Equations
Learning Objectives
Learning objectives of the Systems of Linear Equations section.
Summary Table
Summary of the Systems of Linear Equations section.
Concept | Description | Example |
---|---|---|
Linear Equation | An equation in the form a_1x_1 + a_2x_2 + \cdots + a_nx_n = b | 2x_1 - x_2 + x_3 = 8 |
System of Equations | A set of linear equations with shared variables | \begin{aligned} a_1x_1 + b_1x_2 &= c_1 \\ a_2x_1 + b_2x_2 &= c_2 \end{aligned} |
Coefficient Matrix | A matrix containing only the coefficients of a system’s variables | \begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix} |
Augmented Matrix | A matrix combining coefficients and constants from a system | \left[\begin{array}{ccc|c} 2 & -1 & 1 & 8\\ 1 & 0 & 0 & 2\\ 0 & 0 & 4 & 7\end{array}\right] |
Matrix Notation | General form to represent a matrix A with m rows and n columns | A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} |
Vector | An ordered list of numbers representing a point or direction in space | \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} |
Column Vector | A vertical vector derived from a matrix column | \mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} |
Row Vector | A horizontal vector derived from a matrix row | \mathbf{a}_1^T = \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} |