Set Theory
Learning Objectives
Learning objectives of the Set Theory section.
Summary Table
Summary of the Set Theory section.
Notation | Description | Example |
---|---|---|
\in | Element of | 2 \in A |
\notin | Not an element of | 5 \notin A |
|A| | Cardinality | |Colors| = 3 |
\{\} or \emptyset | Empty set | \emptyset = \{\} |
\mathbb{N} | Set of natural numbers | \{1, 2, 3, ...\} |
\mathbb{Z} | Set of integers | \{..., -2, -1, 0, 1, 2, ...\} |
\mathbb{R} | Set of real numbers | \{..., -0.22,...,0,...,1,..., \pi, ... \} |
Set-builder notation | Describes set by a rule | \{2x : x \in \mathbb{Z}\} |
\subseteq | Subset | \mathbb{N} \subseteq \mathbb{Z} |
\not\subseteq | Not a subset | \{1,2\} \not\subseteq \{2,3\} |
\cup | Union | A \cup B = \{x: x \in A \text{ or } B\} |
\cap | Intersection | A \cap B = \{x: x \in A \text{ and } B\} |
A - B | Set difference | A - B = \{x: x \in A, x \notin B\} |
\bar{A} or A^c | Complement (relative to universal set U) | \bar{P} = \mathbb{N} - P |
(x, y) | Ordered pair | (1, 2) \neq (2, 1) |
A \times B | Cartesian product | \{(a,b) : a \in A, b \in B\} |
A^n | Cartesian power | \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} |
Hammack, Richard H. 2013. Book of Proof. Richard Hammack.