Set Theory

The study of collections of objects, where elements either belong to a set or they don’t—simple, yet powerful! (Hammack 2013) 🌍

Learning Objectives

Learning objectives of the Set Theory section.

Summary Table

Summary of the Set Theory section.

Notation Description Example
\in Element of 2 \in A
\notin Not an element of 5 \notin A
|A| Cardinality |Colors| = 3
\{\} or \emptyset Empty set \emptyset = \{\}
\mathbb{N} Set of natural numbers \{1, 2, 3, ...\}
\mathbb{Z} Set of integers \{..., -2, -1, 0, 1, 2, ...\}
\mathbb{R} Set of real numbers \{..., -0.22,...,0,...,1,..., \pi, ... \}
Set-builder notation Describes set by a rule \{2x : x \in \mathbb{Z}\}
\subseteq Subset \mathbb{N} \subseteq \mathbb{Z}
\not\subseteq Not a subset \{1,2\} \not\subseteq \{2,3\}
\cup Union A \cup B = \{x: x \in A \text{ or } B\}
\cap Intersection A \cap B = \{x: x \in A \text{ and } B\}
A - B Set difference A - B = \{x: x \in A, x \notin B\}
\bar{A} or A^c Complement (relative to universal set U) \bar{P} = \mathbb{N} - P
(x, y) Ordered pair (1, 2) \neq (2, 1)
A \times B Cartesian product \{(a,b) : a \in A, b \in B\}
A^n Cartesian power \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}