Distributions
Learning Objectives
Learning objectives of the Distributions section.
Summary Table
Summary of the Distributions section.
Distribution | Type | Support | Parameters | PDF / PMF | Common Use Case |
---|---|---|---|---|---|
Bernoulli | Discrete | x \in \{0, 1\} | p (success probability) | p_X(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0 \end{cases} | Binary outcomes (e.g., success/failure, yes/no) |
Gaussian (Normal) | Continuous | x \in (-\infty, \infty) | \mu (mean), \sigma^2 (variance) | f_X(x)=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} | Modeling natural phenomena, basis of CLT |
Beta | Continuous | x \in (0, 1) | \alpha, \beta | f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha - 1}(1 - x)^{\beta - 1} | Bayesian priors for probabilities, modeling proportions |