Properties
Learning Objectives
Learning objectives of the Properties section.
Summary Table
Summary of the Properties section.
Concept | Description | Example |
---|---|---|
L1-norm | Measures total absolute difference between two vectors (Manhattan distance). | \[\| \mathbf{u} - \mathbf{v} \|_1 = \sum_{i=1}^n |u_i - v_i|\] |
L2-norm | Measures straight-line distance between two vectors (Euclidean distance). | \[\| \mathbf{u} - \mathbf{v} \|_2 = \sqrt{ \sum_{i=1}^n (u_i - v_i)^2 }\] |
Transpose | Flips a matrix over its diagonal, turning rows into columns. | \[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^\top = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}\] |
Inverse (2×2 Matrix) | Reverses a matrix transformation when the determinant is nonzero. | \[A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \quad \det(A) = ad - bc\] |
Eigenvalues/Vectors | \(\mathbf{v}\) is an eigenvector of \(A\) if \(A \mathbf{v} = \lambda \mathbf{v}\). | \[A \mathbf{v} = \lambda \mathbf{v}\] |
Characteristic Equation | Equation whose solutions are the eigenvalues of \(A\). | \[\det(A - \lambda I) = 0\] |