Set Theory

The study of collections of objects, where elements either belong to a set or they don’t—simple, yet powerful![@SetTheory] 🌍

Learning Objectives

Learning objectives of the Set Theory section.

Summary Table

Summary of the Set Theory section.

Notation Description Example
\(\in\) Element of \(2 \in A\)
\(\notin\) Not an element of \(5 \notin A\)
\(|A|\) Cardinality \(|Colors| = 3\)
\(\{\}\) or \(\emptyset\) Empty set \(\emptyset = \{\}\)
\(\mathbb{N}\) Set of natural numbers \(\{1, 2, 3, ...\}\)
\(\mathbb{Z}\) Set of integers \(\{..., -2, -1, 0, 1, 2, ...\}\)
\(\mathbb{R}\) Set of real numbers \(\{..., -0.22,...,0,...,1,..., \pi, ... \}\)
Set-builder notation Describes set by a rule \(\{2x : x \in \mathbb{Z}\}\)
\(\subseteq\) Subset \(\mathbb{N} \subseteq \mathbb{Z}\)
\(\not\subseteq\) Not a subset \(\{1,2\} \not\subseteq \{2,3\}\)
\(\cup\) Union \(A \cup B = \{x: x \in A \text{ or } B\}\)
\(\cap\) Intersection \(A \cap B = \{x: x \in A \text{ and } B\}\)
\(A - B\) Set difference \(A - B = \{x: x \in A, x \notin B\}\)
\(\bar{A}\) or \(A^c\) Complement (relative to universal set \(U\)) \(\bar{P} = \mathbb{N} - P\)
\((x, y)\) Ordered pair \((1, 2) \neq (2, 1)\)
\(A \times B\) Cartesian product \(\{(a,b) : a \in A, b \in B\}\)
\(A^n\) Cartesian power \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}\)