Random Variables

Random variables bridge the gap between abstract probability spaces and real-world numerical outcomes. Whether counting outcomes or measuring continuous quantities, they provide the foundation for modeling uncertainty in data. 🎲

Learning Objectives

Learning objectives of the Random Variables section.

Summary Table

Summary of the Random Variables section.

Concept Discrete Random Variables Continuous Random Variables
Sample Space Countable outcomes Uncountable outcomes
Domain of Variable \(x \in \mathbb{Z}\) \(x \in \mathbb{R}\)
Mapping \(X: \text{Outcome} \rightarrow x \in \mathbb{Z}\) \(X: \text{Event} \rightarrow x \in \mathbb{R}\)
Probability Function Probability Mass Function (PMF):\(p_X(x) = P(X = x)\) Probability Density Function (PDF):\(f_X(x) \geq 0\)
Total Probability \(\sum_x p_X(x) = 1\) \(\int_{-\infty}^{\infty} f_X(x) \, dx = 1\)
CDF (Cumulative Distribution) \(F_X(x) = \sum_{k \leq x} p_X(k)\) \(F_X(x) = \int_{-\infty}^{x} f_X(u) \, du\)
Probability of Exact Value \(P(X = x) = p_X(x) > 0\)possible \(P(X = x) = 0\) for any exact \(x\)
Expectation \(\mathbb{E}[X] = \sum_x x \, p_X(x)\) \(\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, f_X(x) \, dx\)
Variance \(\text{Var}[X] = \sum_x (x - \mathbb{E}[X])^2 \, p_X(x)\) \(\text{Var}[X] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 \, f_X(x) \, dx\)
Joint Distribution Joint PMF:\(p_{X,Y}(x, y) = P(X = x, Y = y)\) Joint PDF:\(f_{X,Y}(x, y)\)
Marginal Distribution \(p_X(x) = \sum_y p_{X,Y}(x, y)\) \(f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy\)
Conditional Probability \(p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}\) \(f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}\)
Conditional Expectation \(\mathbb{E}[X|Y=y] = \sum_x x \, p_{X|Y}(x|y)\) \(\mathbb{E}[X|Y=y] = \int x \, f_{X|Y}(x|y) \, dx\)
Independence \(p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)\) \(f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)\)