Distributions
Learning Objectives
Learning objectives of the Distributions section.
Summary Table
Summary of the Distributions section.
Distribution | Type | Support | Parameters | PDF / PMF | Common Use Case |
---|---|---|---|---|---|
Bernoulli | Discrete | \(x \in \{0, 1\}\) | \(p\) (success probability) | \(p_X(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0 \end{cases}\) | Binary outcomes (e.g., success/failure, yes/no) |
Gaussian (Normal) | Continuous | \(x \in (-\infty, \infty)\) | \(\mu\) (mean), \(\sigma^2\) (variance) | \(f_X(x)=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\) | Modeling natural phenomena, basis of CLT |
Beta | Continuous | \(x \in (0, 1)\) | \(\alpha\), \(\beta\) | \(f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha - 1}(1 - x)^{\beta - 1}\) | Bayesian priors for probabilities, modeling proportions |