References
Acero, Fernando, Parisa Zehtabi, Nicolas Marchesotti, Michael Cashmore,
Daniele Magazzeni, and Manuela Veloso. 2024. “Deep Reinforcement
Learning and Mean-Variance Strategies for Responsible Portfolio
Optimization.” https://arxiv.org/abs/2403.16667.
Barto, Andrew G, Richard S Sutton, and Charles W Anderson. 1983.
“Neuronlike Adaptive Elements That Can Solve Difficult Learning
Control Problems.” Technical Report, Institute for Cybernetic
Studies, University of Massachusetts. https://psycnet.apa.org/record/1984-25798-001.
Bellemare, Marc G, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013.
“The Arcade Learning Environment: An Evaluation Platform for
General Agents.” Journal of Artificial Intelligence
Research 47: 253–79.
Bertsekas, Dimitri P., and John N. Tsitsiklis. 2008. Introduction to
Probability. 2nd ed. Belmont, MA: Athena Scientific.
Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. “OpenAI
Gym.” https://arxiv.org/abs/1606.01540.
Brunskill, Emma. 2022. “CS234: Reinforcement Learning - Lecture
1.” Course Lecture Slides, Stanford University. https://web.stanford.edu/class/cs234/slides/lecture1pre.pdf.
Fawzi, Alhussein, Matej Balog, Atri Huang, et al. 2022.
“Discovering Faster Matrix Multiplication Algorithms with
Reinforcement Learning.” Nature 610: 47–53. https://doi.org/10.1038/s41586-022-05172-4.
Hagan, Martin T., Howard B. Demuth, Mark H. Beale, and Orlando De Jesús.
2014. Neural Network Design. 2nd ed. Martin Hagan. https://hagan.okstate.edu/NNDesign.pdf.
Hammack, Richard H. 2013. Book of Proof. Richard Hammack.
Ie, Eugene, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar,
Jing Wang, Rui Wu, and Craig Boutilier. 2019. “RecSim: A
Configurable Simulation Platform for Recommender Systems.” https://arxiv.org/abs/1909.04847.
Levine, Sergey. 2019. “Introduction to Deep Reinforcement
Learning.” Course Lecture Slides, Deep RL Course, UC Berkeley. https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-1.pdf.
Li, Lihong, Wei Chu, John Langford, and Robert E. Schapire. 2010.
“A Contextual-Bandit Approach to Personalized News Article
Recommendation.” In Proceedings of the 19th International
Conference on World Wide Web, 661–70. ACM.
Martin T. Hagan, Amir Jafari. 2024. “NNDesignDeepLearning.”
https://github.com/NNDesignDeepLearning/NNDesignDeepLearning.
Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. “Playing
Atari with Deep Reinforcement Learning.” https://arxiv.org/abs/1312.5602.
Moore, Andrew William. 1990. “Efficient Memory-Based Learning for
Robot Control.” University of Cambridge.
Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, et al. 2022. “Training Language
Models to Follow Instructions with Human Feedback.” https://arxiv.org/abs/2203.02155.
Sanz-Cruzado, Javier, Nikolaos Droukas, and Richard McCreadie. 2024.
“FAR-Trans: An Investment Dataset for Financial Asset
Recommendation.” https://arxiv.org/abs/2407.08692.
Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement
Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press.
Todorov, Emanuel, Tom Erez, and Yuval Tassa. 2012. “MuJoCo: A
Physics Engine for Model-Based Control.” In *Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)*. http://www.mujoco.org/.